
Visual and Audio Signal Processing Lab

University of Wollongong

MATLAB Library for Convolutional Neural Networks
Son Lam Phung and Abdesselam Bouzerdoum

Technical Report

Address: School of Electrical, Computer and Telecommunications Engineering,
University of Wollongong, Northfields Av, Wollongong, NSW 2522, Australia.

Emails: s.phung@ieee.org, a.bouzedoum@ieee.org.

Keywords: convolutional neural networks, MATLAB implementation,
image classification, training algorithms.

Date: 1 November 2009.

Contents

1 Introduction 2

2 CNN network model 2
2.1 Network architecture . 2
2.2 Mathematical model . 3

2.2.1 Convolution layer . 3
2.2.2 Sub-sampling layer . 4
2.2.3 Output layer . 5

3 Network training 5
3.1 Derivation of CNN error gradient . 6

3.1.1 Error sensitivity definition . 6
3.1.2 Error sensitivity computation . 7
3.1.3 Error gradient computation . 7

3.2 CNN training algorithms . 8

4 Library usage 10
4.1 Main functions . 10

4.1.1 Function cnn new . 10
4.1.2 Function cnn init . 10
4.1.3 Function cnn sim . 11
4.1.4 Function cnn train . 11

4.2 Image classification application . 12
4.2.1 Experiment data . 12
4.2.2 Creating a CNN . 12
4.2.3 Training the CNN . 14
4.2.4 Testing the CNN . 15

5 MATLAB implementation notes 16

6 Conclusion 17

7 Appendix 18

1

1 Introduction

Convolutional neural network (CNN), originally proposed by LeCun [1], is a neural network model with
three key architectural ideas: local receptive fields, weight sharing, and sub-sampling in the spatial
domain. The network is designed for the recognition of two-dimensional visual patterns. Convolutional
neural network has many strengths. First, feature extraction and classification are integrated into one
structure and are fully adaptive. Second, the network extracts 2-D image features at increasing
dyadic scales. Third, it is relatively invariant to geometric, local distortions in the image. CNN has
been used for in several applications including hand-written digit recognition, face detection, and face
recognition.

This report documents a MATLAB library that can be used to create and train a convolutional
neural network. The library originated from MATLAB code we wrote in 2006 for a paper on pyra-
midal neural network [2]. Since then, the library has been revised to optimize speed and improve
documentation. The library and this report are aimed at researchers who wish to experiment with
convolutional neural networks.

The report is structured as follows. Section 2 describes architectural aspects of the convolutional
neural networks. Section 3 presents algorithms for batch training of the networks. Section 4 describes
the main functions in this library, and illustrates its usage with an example application. Section 5
discusses the MATLAB implementation. Finally, Section 6 gives some concluding remarks.

2 CNN network model

In this section, we first describe the architecture of CNN, and then present a detailed mathematical
model of the network.

2.1 Network architecture

Convolutional neural networks are designed to process two-dimensional (2-D) image. A CNN consists
of three main types of layers: (i) convolution layers, (ii) sub-sampling layers, and (iii) an output
layer. Network layers are arranged in a feed-forward structure: each convolution layer is followed
by a sub-sampling layer, and the last convolution layer is followed by the output layer (see Fig. 1).
The convolution and sub-sampling layers are considered as 2-D layers, whereas the output layer is
considered as a 1-D layer. In CNN, each 2-D layer has several planes. A plane consists of neurons
that are arranged in a 2-D array. The output of a plane is called a feature map.

• In a convolutional layer, each plane is connected to one or more feature maps of the preceding
layer. A connection is associated with a convolution mask, which is a 2-D matrix of adjustable
entries called weights. Each plane first computes the convolution between its 2-D inputs and
its convolution masks. The convolution outputs are summed together and then added with an
adjustable scalar, known as a bias term. Finally, an activation function is applied on the result
to obtain the plane’s output. The plane output is a 2-D matrix called a feature map; this name
arises because each convolution output indicates the presence of a visual feature at a given pixel
location. A convolution layer produces one or more feature maps. Each feature map is then
connected to exactly one plane in the next sub-sampling layer.

• A sub-sampling layer has the same number of planes as the preceding convolution layer. A sub-
sampling plane divides its 2-D input into non-overlapping blocks of size 2 × 2 pixels. For each
block, the sum of four pixels is calculated; this sum is multiplied by an adjustable weight before
being added to a bias term. The result is passed through an activation function to produce an
output for the 2× 2 block. Clearly, each sub-sampling plane reduces its input size by half, along
each dimension. A feature map in a sub-sampling layer is connected to one or more planes in
the next convolution layer.

• In the last convolution layer, each plane is connected to exactly one preceding feature map.
This layer uses convolution masks that have exactly the same size as its input feature maps.

2

convolution

layer C1

input
image

convolution plane
sub-sampling plane
output neurons

sub-sampling

layer S2

network

output

1-to-1

connection

custom

connection

1-to-1

connection

custom

connection

full

connection

last

convolution

layer C2a+1

convolution

layer C3

sub-sampling

layer S4 output

layer

F2a+2

Figure 1: Layers in a convolutional neural network.

Therefore, each plane in the last convolution layer will produce one scalar output. The outputs
from all planes in this layer are then connected to the output layer.

• The output layer, in general, can be constructed from sigmoidal neurons or radial-basis-function
(RBF) neurons. Here, we will focus on using sigmoidal neurons for the output layer. The
outputs of this layer are considered as the network outputs. In applications such as visual
pattern classification, these outputs indicate the category of the input image.

2.2 Mathematical model

Table 1 summarizes the notation used to describe the functional aspects of CNN. The symbol l denotes
the index of a network layer. The layer index l goes from 1 to L, where L is the number of network
layers. Here, we assume that L = 2a + 2, where a is a positive integer. Let N l be the number of
feature maps in layer l, and fl(.) be the activation function of layer l. Let yl

n be the n-th feature map
(output) of layer l.

2.2.1 Convolution layer

Consider a convolution layer l. In this structure, l is an odd integer, l = 1, 3, ..., 2a + 1. Let hl × wl

denote the size of convolution mask for layer l. For feature map n, let

• wl
m,n = {wl

m,n(i, j)} be the convolution mask from feature map m in layer (l−1) to feature map
n in layer l,

• bln be the bias term associated with feature map n,

• Vl
n denote the list of all planes in layer (l−1) that are connected to feature map n. For example,

Vl
4 = {2, 3, 5} means that feature maps 2, 3 and 5 of layer (l− 1) are connected to feature map

4 of layer l.

3

Table 1: Architectural notation for CNN
Description Symbol

Input image size H0 ×W0

Input image pixel x(i, j) or y01(i, j)

Layer index l

Number of layers L = 2a+ 2

Convolution layers C1, C2,..., C2a+1

Sub-sampling layers S1, S3,..., S2a

Output layer F 2a+2

Activation function of layer l f l

Number of feature maps in layer l N l

Size of convolution mask for layer Cl rl × cl
Convolution mask from feature map m in layer Sl−1 {wl

m,n(i, j)}

to feature map n in layer C l

Bias for feature map n in convolution layer C l bln
Weight for feature map n in layer Sl wl

n

Bias for feature map n in sub-sampling layer Sl bln
Feature map n in layer l yln(i, j)

Size of a feature map in layer l Hl ×Wl

28×28

bias b

f

32×32
5×5

28×28

input
feature maps

convolution
outputs

feature map
of the plane

layer l-1 convolution layer l: one plane

convolution
mask

Figure 2: A convolution layer in CNN.

Let ⊗ be the 2-D convolution operator. Feature map n of convolution layer l is calculated as

yl
n = fl(

∑

m∈Vl
n

yl−1
m ⊗wl

m,n + bln) (1)

Suppose that the size of input feature maps yl−1
m is H l−1 ×W l−1 pixels, and the size of convolution

masks wl
m,n is rl × cl pixels. The size of output feature map yl

n is

(H l−1 − rl + 1)× (W l−1 − cl + 1) pixels. (2)

2.2.2 Sub-sampling layer

Now, we consider a sub-sampling layer l. In this structure, l is an even integer, l = 2, 4, ..., 2a. For
feature map n, let wl

n be the weight and bln be the bias term. We divide feature map n of convolution
layer (l−1) into non-overlapping blocks of size 2×2 pixels. Let zl−1

n be a matrix obtained by summing

4

the four pixels in each block. That is,

zl−1
n (i, j) = yl−1

n (2i− 1, 2j − 1) + yl−1
n (2i− 1, 2j) + yl−1

n (2i, 2j − 1) + yl−1
n (2i, 2j). (3)

Feature map n of sub-sampling layer l is now calculated as

yl
n = fl(z

l−1
n × wl

n + bln) (4)

Clearly, a feature map yl
n in sub-sampling layer l will have a size of H l ×W l, where

H l = H l−1/2 and W l = W l−1/2. (5)

14×14
bias b

f

28×28

input feature map

output
feature map

layer l-1 subsampling layer l: one plane

14×14

output of
2×2 block sum

×

weight w

Figure 3: A sub-sampling layer in CNN.

2.2.3 Output layer

In this study, we consider output layer L that consists of sigmoidal neurons. Let NL be the number of
output sigmoidal neurons. Let wL

m,n denote the weight from feature map m of the last convolutional

layer, to neuron n of the output layer. Let bLn be the bias term associated with neuron n of layer L.
The output of sigmoidal neuron n is calculated as

yLn = fL(
NL−1

∑

m=1

yL−1
m wL

m,n + bLn). (6)

The outputs of all sigmoidal neurons form the network outputs:

y = [yL1 , y
L
2 , . . . , y

L
NL

]. (7)

3 Network training

For CNNs to perform different visual recognition tasks, a training algorithm must be devised. In a
given application, the objective of network training is to minimize an error function, which is defined
in terms of the network actual outputs and the desired outputs.

Table 2 summarizes the various definitions used in CNN training. Suppose that the training set
has K input images and K desired output vectors. Let xk be the k-th training image , and dk be the
corresponding desired output vector. The error function is defined as

E(w) =
1

K ×NL

K
∑

k=1

NL
∑

n=1

(ykn − dkn)
2, (8)

where ykn is the actual network output. This is a function of all network parameters (weights and
biases).

5

There are two major approaches to CNN training. The first approach, known as online training,
updates network parameters after each training sample is presented. This approach requires less
memory, and but it is less stable because each training sample can push the network parameters along
a new direction. The second approach, known as batch training, updates network weights and biases
after all training samples are presented. This approach requires large memory storage because it must
accumulate the changes in network parameters. Since online training is a special case of batch training
(when K = 1), we will focus on batch training. Note that in batch training, an evaluation of network
outputs for all training samples and an update of all network parameters are referred to collectively
as a training epoch.

Table 2: Notation for CNN training algorithm.
Description Symbol Formula

Training image index k k = 1, 2, ...,K

Training image k xk xk = {xk(i, j), i = 1, ..., H0; j = 1, ...,W0}

Desired output sample k dk dk = (dk1, d
k
2, ..., d

k
NL

)T

Network input or output of layer 0 y0,k(i, j) (y0,k(i, j) = (xk(i, j)), i = 1, ..., H0; j = 1, ...,W0

Weighted sum input to neuron (u, v) in sl,kn (u, v) n = 1, ..., Nl

convolution layer l, feature map n u = 1, ..., Hl; v = 1, ...,Wl

Output of neuron (u, v) in convolution yl,kn (u, v) yl,kn (u, v) = fl(s
l,k
n (u, v))

layer l, feature map n for input image k

Weighted sum input to neuron (u, v) in sl,kn (u, v)
in subsamplinglayer l, feature map n

Output of neuron (u, v) in yl,kn (u, v) yl,kn (u, v) = f l(sl,kn (u, v))
in subsamplinglayer l, feature map n

The nth error for image k ekn ekn = yL,kn − dkn

Error function E(w) E(w) = 1
K×NL

K
∑

k=1

NL
∑

n=1
(ykn − dkn)

2

Error sensitivity of pixel (u, v) δl,ku,v δl,ku,v = ∂E/∂sl,ku,v, l ≤ Lp

in 2-D layer l

Error sensitivity of neuron n in 1-D layer l δl,kn δl,kn = ∂E/∂sl,kn , l > Lp

3.1 Derivation of CNN error gradient

This section presents a method for calculating the gradient of the error function defined in (8). We
discuss the definition of error sensitivity, and methods to calculate error sensitivity, and the error
gradient.

3.1.1 Error sensitivity definition

The error gradient is computed through error sensitivities, which are defined as the partial derivatives
of the error function with respect to (w.r.t.) the weighted sum input to a neuron.

For neuron (i, j) in feature map n of convolution layer l, its error sensitivity is defined as

δl,kn (i, j) =
∂E

∂sl,kn (i, j)
, for l = 1, 3, ..., 2a+ 1. (9)

For neuron (i, j) in feature map n of sub-sampling layer l, its error sensitivity is given by

δl,kn (i, j) =
∂E

∂sl,kn (i, j)
, for l = 2, 4, ..., 2a. (10)

6

For neuron n in output layer L, its error sensitivity is

δL,kn =
∂E

∂sL,kn

. (11)

3.1.2 Error sensitivity computation

Using Table 2 and the chain rule of differentiation, we can express the error sensitivities as follows.

• Output layer: l = L

δL,kn =
2

K ×NL

ekn f ′
L(s

L,k
n), for n = 1, 2, ..., NL. (12)

• Last convolution layer: l = L− 1

δl,kn = f ′
l (s

l,k
n)

Nl+1
∑

m=1

δl+1,k
n wl+1

n,m, for n = 1, 2, ..., Nl. (13)

Because feature maps in convolution layer (L − 1) have a size of 1 × 1 pixel, writing δL−1,k
n or

δL−1,k
n (1, 1) is equivalent.

• Last sub-sampling layer: l = L− 2

δl,kn (i, j) = fl[s
l,k
n (i, j)]× wl+1

n,n (i, j)× δl+1,k
n (1, 1), (14)

where n = 1, 2, ..., NL−2; i = 1, 2, ..., HL−2; j = 1, 2, ...,WL−2.

• Other convolution layer: l = 2a+ 1

δl,kn (i, j) = fl[s
l,k
n (i, j)]× δl+1

n (i′, j′)× wl+1,k
n , (15)

where i′ = ⌊i/2⌋ and j′ = ⌊j/2⌋.

• Other sub-sampling layer: l = 2a

δl,kn (i, j) = fl[s
l,k
n (i, j)]×

∑

m∈U l
n

∑

(i′,j′)∈Rl(i,j)

δl+1,k
m (i′, j′) wl+1

n,m(i− i′, j − j′). (16)

3.1.3 Error gradient computation

• Output layer: l = L

-Weights wl
m,n:

∂E

∂wl
m,n

=
K
∑

k=1

δl,kn yl−1,k
m , (17)

where m = 1, 2, ..., Nl−1 and n = 1, 2, ..., Nl.
-Biases bln:

∂E

∂bln
=

K
∑

k=1

δl,kn , (18)

where n = 1, 2, ..., Nl.

7

• Last convolution layer: l = L− 1

-Weights wl
m,n(i, j):

∂E

∂wl
m,n(i, j)

=
K
∑

k=1

δl,kn (i, j) yl−1,k
n,n (19)

where n = 1, 2, ..., Nl.

-Biases bln:

∂E

∂bln
=

K
∑

k=1

∑

(i,j)

δl,kn (i, j) (20)

where n = 1, 2, ..., Nl.

• Sub-sampling layer: l = 2a

-Weights wl
n:

∂E

∂wl
n

=
K
∑

k=1

∑

(i′,j′)

δl,kn (i′, j′) yl−1,k
n (i′, j′) (21)

where n = 1, 2, ..., Nl.

-Biases bln:

∂E

∂wl
n

=
K
∑

k=1

∑

(i′,j′)

δl,kn (i′, j′) (22)

where n = 1, 2, ..., Nl.

• Other convolution layer: l = 2a+ 1

-Weights wl
m,n(i, j):

∂E

∂wl
n,n(i, j)

=
K
∑

k=1

δl,kn (i, j) yl−1,k
n,n (23)

where n = 1, 2, ..., Nl.

-Biases bln:

∂E

∂bln
=

K
∑

k=1

∑

(i,j)

δl,kn (i, j) (24)

where n = 1, 2, ..., Nl.

3.2 CNN training algorithms

Once the error gradient ∇E(t) is derived, numerous optimization algorithms for minimizing E can be
applied to train the network. Here, we focus on five representative training algorithms:

• gradient descent (GD) [3],

• gradient descent with momentum and variable learning rate (GDMV) [4],

• resilient back-propagation (RPROP) [5],

• conjugate gradient (CG) [6]

8

• Levenberg-Marquardt (LM) [7]

Three algorithms GD, GDMV and RPROP are first-order optimization methods. The conjugate
gradient algorithm can be considered as an intermediate between first- and second-order methods,
whereas the Levenberg-Marquardt algorithm is a trust-region method that uses the Gauss-Newton
approximation of the Hessian matrix. Since details of these algorithms can be found in the given
references, we only summarize here their main characteristics (see Table 3).

Table 3: CNN training algorithms.
Algorithm Description

Gradient Weights are updated along
Descent the negative gradient
(GD) [3] ∆w(t) = −α∇E(t)

α is scalar learning rate, α > 0

GD with Weight update is a linear combination
Momentum and of gradient and previous weight update
Variable ∆w(t) = λ ∆w(t− 1)− (1− λ) α(t) ∇E(t)
Learning Rate λ is momentum parameter, 0 < λ < 1
(GDMV)
[4] α(t) is adaptive scalar learning rate

Resilient Weight update depends only
Backpropagation on the sign of gradient

∆wi(t) = −sign{ ∂E
∂wi

(t)} ×∆i(t)

(RPROP) [5] ∆i(t) is adaptive step specific to weight wi, defined as

∆i(t) =

ηinc ∆i(t− 1), if ∂E
∂wi

(t) ∂E
∂wi

(t− 1) > 0

ηdec ∆i(t− 1), if ∂E
∂wi

(t) ∂E
∂wi

(t− 1) < 0

∆i(t− 1), otherwise

ηinc > 1, 0 < ηdec < 1: scalar terms

Conjugate Weights are updated along directions mutually
Gradient (CG) conjugated w.r.t. Hessian matrix
[6] ∆w(t) = α(t)s(t), where search direction defined as

s(t) =

{

−∇E(t) if t ≡ 1 (mod P)

−∇E(t) + β(t) s(t− 1) otherwise

learning step α(t) is found through a line search [8].
β(t) is updated according to the following Polak-Ribiere formula

β(t) = [∇E(t)−∇E(t−1)]T ∇E(t)
‖∇E(t−1)‖2

Levenberg- 2nd-order Taylor expansion and Gauss-Newton
Marquardt (LM) approximation of Hessian matrix
[7] ∆w(t) = −[JTJ+ µI]−1 ∇E

J is the Jacobian matrix defined as

J(q−1)K+k,i =
∂ekq
∂wi

, q = 1, 2, ..., NL; k = 1, 2, ...,K; i = 1, 2, ..., P

Gradient ∇E is computed through the Jacobian matrix J.
µ is an adaptive parameter controlling the size of the trust region.

Computation of the Jacobian matrix is similar to computation of the gradient ∇E. However, we
need to modify the definitions of error sensitivities. For the Jacobian matrix, error sensitivities are
defined for each network error ekq , where q = 1, 2, ..., NL, instead of the overall error function E.

9

4 Library usage

In this section, we first present an overview of the main functions in the MATLAB library. Then, we
illustrate its usage through an example application in face versus non-face classification.

4.1 Main functions

Designing a CNN involves four main types of tasks: (i) creating a network; (ii) initializing the network
weights and biases; (iii) computing the network output for a given input; (iv) training the network to
produce the desired output for a given input. Correspondingly, four MATLAB functions are created
to perform these tasks: cnn new, cnn init, cnn sim, and cnn train.

Table 4: Main MATLAB functions in the CNN library.
Name Description

cnn new Create a new network

cnn init Initialize a network

cnn cm Create a connection matrix for a network layer

cnn sim Compute network ouput

cnn train Train a network

cnn train gd Train a CNN using gradient descent method

cnn train rprop Train a CNN using resilient backpropagation method

cnn compute gradient Compute gradient of the error function for CNN

4.1.1 Function cnn new

The syntax of this function is given as

net = cnn_new(input_size, c, rec_size, tf_fcn, train_method)

where

• input size: size of input image to the network. For example, to process images with
height of 36 pixels and width of 32 pixels, we set input size = [36 32].

• c: a cell array of connection matrices. Cell c{l} stores the connection matrix for layer
l. That is, c{l}(i, j) is set to true if there is a connection from feature map i of layer
l − 1, to feature map j of layer l. A MATLAB function cnn cm has been written to
create standard connection matrices.

• rec size: size of receptive fields. It is a two-column matrix where rec size(l, :) is the
receptive size of layer l. Note that the receptive fields of the sub-sampling layer is
always [2 2].

• tf fcn: transfer functions of network layers. It is a cell array of strings. Possible
MATLAB transfer functions are ’tansig’, ’logsig’, ’purelin’ and ’ltanh’.

• train method : training method for the network, as a string. Training methods that
have been implemented are ’gd’ and ’rprop’.

4.1.2 Function cnn init

This function randomizes network weights and biases, according to a Gaussian distribution
with mean 0 and standard deviation 1:

new_net = cnn_init(net)

Note that when a network is created using cnn new, its weights and biases are automatically
initialized, so calling cnn init is not needed.

10

4.1.3 Function cnn sim

This function computes the network output y for given input x.

y = cnn_sim(net, x)

Input x is a 3-D array with H × W × K elements, where K is the number of 2-D input
samples. Output y is a matrix with K columns, each column is the output for one input
sample.

4.1.4 Function cnn train

This function trains the network to produce the desired output for a given input. Its
syntax is given as

[new_net, new_tr] = cnn_train(net, x, d)

where

• net : existing network,

• x : network input as 3-D array of size H ×W ×K,

• d : target output as matrix with K columns,

• tr : existing training record (optional),

• new net : trained network,

• new tr : updated training record.

To support analysis of the training process, several performance indicators are recorded in
a MATLAB structure at defined training epoches. The indicates are stored in a MATLAB
structure new tr, which includes the following fields

• mse: mean-square-errors,

• time: training time in seconds,

• epoch: epoch count,

• output eval : number of output evaluations,

• gradient eval : number of gradient evaluations,

• hessian eval : number of Hessian matrix evaluations,

• jacobian eval : number of Jacobian matrix evaluations,

For example, to plot the mean-square-error versus training time, we can type

plot(new_tr.time, new_tr.mse);

If an existing training record is passed to the function in tr parameter, cnn train will ap-
pend new training information to it and return an updated record in tr new.

To perform the actual training, cnn train will call another MATLAB function; the name of
this function is determined by the field net.train.method. For example, if net.train.method

is ’gd ’, training will be done by cnn train gd :

[new_net, new_tr] = cnn_train_gd(net, x, d)

This scheme allows new training algorithms to be added easily.

11

4.2 Image classification application

In this section, we present an example application of convolutional neural network in image classifi-
cation. We will use the MATLAB library to design a CNN to differentiate between face and non-face
image patterns. Face detection aims to determine the presence and the locations of human faces in a
digital image. To tackle this vision problem, a common approach is to scan all rectangular regions of
the digital image, and decide if each region is a face or a nonface - a task that can be done using a
CNN classifier. The complete code for this experiment can be found in section Appendix.

(a) face patterns

(b) nonface patterns

Figure 4: Examples of training images.

4.2.1 Experiment data

The data used in this experiment are taken from a face and skin detection database [9].
For training, we use 1000 face images and 1000 non-face images (see Fig. 4); each image
has 32× 32 pixels. To load the training data, type

>> load(’data\train_data.mat’)

The data are

>> whos

Name Size Bytes Class

d 1x2000 16000 double

x 32x32x2000 16384000 double

That is, x is a 3-D array of 2000 input samples, each sample has 32× 32 pixels. Variable d
is a row vector of 2000 entries, where

d(k) =

{

1, if sample k is a face pattern,

−1, if sample k is a non− face pattern.
(25)

4.2.2 Creating a CNN

We will create a CNN as shown in Fig. 5. This network accepts an input image of size
32× 32 pixels. It has a total of six layers.

12

• Convolution layer C1 uses receptive field of size 5× 5. It produces two feature maps,
each consisting of 28× 28 pixels.

• Sub-sampling layer S2 uses receptive field of size 2×2; this applies to all sub-sampling
layers. This layer produces feature maps of size 14 × 14 pixels. Note that feature
maps in a sub-sampling layer always has one-to-one connections to feature maps of
the previous convolution layer.

• Convolution layer C3 uses receptive field of size 3× 3. It produces five feature maps,
each consisting of 12× 12 pixels.

• Sub-sampling layer S4 uses a receptive field of size 2×2 and produces 5 feature maps
of size 6× 6 pixels.

• Convolution layer C5 uses receptive field of size 6× 6; this size is the same as the size
of the feature map produced by the last sub-sampling layer. As a result, convolution
layer C5 produces 5 scalar features.

• Output layer F6 has only one neuron that is fully connected to the output of C5.

We enter the receptive sizes for network layers as

>> rec_size = [5 5; 2 2; 3 3; 2 2; 6 6; 0 0]

convolution

layer C1

input
image

convolution plane
sub-sampling plane
output neurons

sub-sampling

layer S2

network

output

1-to-1

connection

custom

connection

1-to-1

connection

custom

connection

full

connection

convolution

layer C5

convolution

layer C3

sub-sampling

layer S4
output

layer F6
receptive

field size

Figure 5: An example of convolutional neural network.

There are three types of connections between CNN layers: (i) one-to-one connection; (ii)
full connection; and (iii) custom connection. By specifying the connections, we also state
the number of feature maps in each layer.

• The connection from a convolution layer to the next sub-sampling layer is always
one-to-one connection. That is, a feature map of a convolution layer is connected to
exactly one feature map of the next sub-sampling layer. We see this in C1 to S2, and
C3 to S4. A one-to-one connection from C1 to S2 can be created in Matlab as

>> cm2 = cnn_cm(’1-to-1’, 2)

13

where 2 is the number of feature maps in C1.

• The connection from a sub-sampling layer to the next convolution layer is a custom
connection. For example, consider the connection from S2 to C3 in Fig. 5. Feature
map 1 of layer S2 is connected to feature maps 1, 2 and 5 of layer C3. Feature map 2
of layer S2 is connected to feature maps 3, 4 and 5 of layer C3. This can be described
by a connection matrix cm3 as follows

>> cm3 = [1 1 0 0 1;

0 0 1 1 1]

The entry cm3(i, j) at row i and column j indicates if there is a connection from
feature map i of layer S2 to feature map j of layer C3.

• The connection from the last convolution layer to the output layer is always full
connection. That is, each feature produced by the last convolution layer is connected
to all neurons in the output layer. We see this in C5 to F6. A full connection for C5
to F6 can be created in Matlab as

>> cm6 = cnn_cm(’full’, 5, 1)

where 5 is the number of feature maps in layer C5, and 1 is the number of neurons
in layer F6.
After connection matrices cm1, cm2, cm3, cm4, cm5 and cm6 are created for all six
layers, they are combined into one cell array for the network

>> c = {cm1, cm2, cm3, cm4, cm5, cm6}

In this example, the transfer functions for network layers are set as

• convolution layers C1, C3 and C5: ’tansig’,

• sub-sampling layers S2 and S4: ’purelin’,

• output layer F6: ’tansig’.

The training method for the network is chosen to be ’rprop’, which is one of the fastest
among the first-order training algorithms:

>> train_method = ’rprop’;

The network structure can be created as

>> net = cnn_new([H W], c, rec_size, tf_fcn, train_method);

4.2.3 Training the CNN

To train the network, we call library function cnn train:

>> [new_net, tr] = cnn_train(net, x, d);

Parameters controlling the training process are stored in structure net.train. Important
parameters include

• epochs: the maximum number of training epochs;

• goal : the target MSE;

• show : how often training progress is recorded/displayed. For example, if show = 20,
training error will be displayed every 20 epochs;

• method : the name of training method.

14

The parameters specific to a training algorithm is stored in the field net.train.X, where X

is the name of the algorithm. For example, all training parameters for RPROP are stored
in structure net.train.rprop; the default values for these parameters are

• etap: 1.01,

• etam: 0.99,

• delta init : 0.01,

• delta max : 10.0,

To control the training process, the user can alter all of the default parameters in net.train

before calling cnn train. Figure 6 shows the training error at different training epoch, for
the CNN network with 316 weights and biases and a training set of 2000 images.

0 200 400 600 800 1000 1200
0

0.5

1

1.5

2

Epochs

T
ra

in
in

g
M

S
E

Figure 6: Training error versus epoch for a CNN. Training method: RPROP; network size: 316 weights
and biases; training set: 2000 images; image size: 32× 32 pixels.

4.2.4 Testing the CNN

In the following code,we call function cnn sim to compute the network output for a given
set of images x test.

>> load(’data\test_data.mat’)

>> whos

>> y_test = cnn_sim(new_net, x_test);

>> cr_test = sum((y_test>0)==(d_test>=0))/length(d_test)*100

The trained CNN has a classification rate of 98.6% on the training set, and 95.8% on the
test set.

15

5 MATLAB implementation notes

All data about a CNN are stored in a MATLAB structure. The main fields in this structure are listed
in Table 5.

Table 5: MATLAB structure net for convolutional neural network.
Field name Description

L number of layer in the network.

w trainable weights.
net.w{l} stores the weights for layer l.

b trainable biases,
net.b{l} stores the weights for layer l.

c connection matrices.
net.c{l} stores connection matrix to layer l.

rec size receptive sizes,
net.rec size(l, :) is a row-vector for the receptive size of layer l.

hrec size half receptive sizes, used internally for image filtering.

f transfer functions,
net.f{l} is the transfer function of layer l.

input size size of input image to network as [width, height].

no fms number of feature maps in each layer,
net.no fms(l) is the number of feature maps in layer l.

fm size the spatial size (with, height) of the feature maps in each layer,
net.fm size(l, :) is the size of feature maps in layer l.

layers text information about each layer, net.layers{l} is for layer l
.type: ’C’, ’S’ or ’F’
.name: ’C1’,′ S2′, ...
.connection: ’1-to-1’, ’full’, or ’custom’

P total number of trainable parameters (weights and biases) for the network.

train parameters that control the training process.

For the example network in Fig. 5, the MATLAB structure net is given as follows.

net = L: 6

w: {1x6 cell}

b: {1x6 cell}

c: {1x6 cell}

rec_size: [6x2 double]

hrec_size: [6x2 double]

f: {6x1 cell}

input_size: [32 32]

no_fms: [2 2 5 5 5 1]

fm_size: [6x2 double]

layers: {1x6 cell}

P: 316

train: [1x1 struct]

16

6 Conclusion

Suggestions to improve the library are welcome. If you use the library in your published work, please
advise us via e-mail, and provide references to:

1. S. L. Phung and A. Bouzerdoum, ”MATLAB library for convolutional neural network,” Technical
Report, ICT Research Institute, Visual and Audio Signal Processing Laboratory, University of
Wollongong. Available at: http://www.uow.edu.au/˜phung.

2. S. L. Phung and A. Bouzerdoum, ”A pyramidal neural network for visual pattern recognition,”
IEEE Transactions on Neural Networks, vol. 27, no. 1, pp. 329343, 2007.

This library has been used by:

University of Missouri (USA), Chinese Academy of Sciences (China), Seoul National University (Ko-
rea), National University of Sciences and Technology (Pakistan), University of Tennessee (USA),
Beijing Normal University (China), University of New Brunswick (Canada), University of Bologna
(Italy), National University of Singapore (Singapore), University of Western Australia (Australia),
The Johns Hopkins University (USA), Jawaharlal Nehru University (India), University of Manch-
ester (UK), Sharif University of Technology (Iran), South China University of Technology (China),
Shanghai Jiao Tong University (China), Indian Statistical Institute (India), Yildiz Technical Univer-
sity (Turkey), University of Belgrade (Serbia), University of Naples (Italy), K. N. Toosi University
of Technology (Iran), Beijing University of Technology (China), University of Innsbruck (Austria),
Politehnica University in Bucharest (Romania).

17

7 Appendix

% ------- Example Code: Using the Matlab Library for CNN ----------

%% Load training data

load(’data\train_data.mat’), whos

%% Create a CNN

H = 32; % height of 2-D input

W = 32; % width of 2-D input

% Create connection matrices

cm1 = cnn_cm(’full’, 1, 2); % input to layer C1, C1 has 2 planes

cm2 = cnn_cm(’1-to-1’, 2); % C1 to S2

cm3 = [1 1 0 0 1; 0 0 1 1 1];% S2 to layer C3, C3 has 5 planes

cm4 = cnn_cm(’1-to-1’, 5); % C3 to S4

cm5 = cnn_cm(’1-to-1’, 5); % S4 to C5

cm6 = cnn_cm(’full’,5,1); % C5 to F6

c = {cm1, cm2, cm3, cm4, cm5, cm6};

% Receptive sizes for each layer

rec_size = [5 5; % C1

2 2; % S2

3 3; % C3

2 2; % S4

0 0; % C5 auto calculated

0 0]; % F6 auto calculated

% Transfer function

tf_fcn = {’tansig’, % layer C1

’purelin’, % layer S2

’tansig’, % layer C3

’purelin’, % layer S4

’tansig’, % layer C5

’tansig’} % layer F6 output

% Training method

train_method = ’rprop’; % ’gd’

% Create CNN

net = cnn_new([H W], c, rec_size, tf_fcn, train_method);

%% Network training

net.train.epochs = 1100;

[new_net, tr] = cnn_train(net, x, d);

% new_net is trained network, tr is training record

save(’data\trained_net.mat’, ’new_net’, ’net’, ’tr’);

%% Plotting training performance

plot(tr.epoch, tr.mse, ’b-’, ’LineWidth’, 2); grid

h = xlabel(’Epochs’), set(h, ’FontSize’, 14);

h = ylabel(’Training MSE’), set(h, ’FontSize’, 14);

set(gca, ’FontSize’, 14);

y = cnn_sim(new_net, x); % network output

cr = sum((y >0) == (d >=0))/length(d)*100;

fprintf(’Classification rate (train): cr = %2.2f%%\n’,cr);

%% Network testing

load(’data\test_data.mat’), whos

y_test = cnn_sim(new_net,x_test); % network output

cr_test = sum((y_test >0)==(d_test>=0))/length(d_test)*100;

fprintf(’Classification rate (test): cr = %2.2f%%\n’,cr_test);

18

References

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,”
Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[2] S. L. Phung and A. Bouzerdoum, “A pyramidal neural network for visual pattern recognition,” IEEE

Transactions on Neural Networks, vol. 27, no. 1, pp. 329–343, 2007.

[3] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error propagation,”
in Parallel distributed processing: explorations in the microstructure of cognition. Cambridge, MA: Bradford
Books, 1986, vol. I, p. 318 362.

[4] M. T. Hagan, H. B. Demuth, and M. H. Beale, Neural network design. Boston, MA: PWS Publishing,
1996.

[5] M. Riedmiller and H. Braun, “A direct adaptive method of faster backpropagation learning: The rprop
algorithm,” in IEEE International Conference on Neural Networks, San Francisco, 1993, pp. 586–591.

[6] E. K. P. Chong and S. H. Zak, An introduction to optimization. New York: John Wiley and Sons, Inc.,
1996.

[7] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with the marquardt algorithm,” IEEE

Transactions on Neural Networks, vol. 5, no. 6, pp. 989–993, 1994.

[8] C. Charalambous, “A conjugate gradient algorithm for the efficient training of artificial neural networks,”
IEE Proceedings Part G, vol. 139, no. 3, pp. 301–310, 1992.

[9] S. L. Phung, A. Bouzerdoum, and D. Chai, “Skin segmentation using color pixel classification: analysis and
comparison,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 1, pp. 148–154,
2005.

19

	Introduction
	CNN network model
	Network architecture
	Mathematical model
	Convolution layer
	Sub-sampling layer
	Output layer

	Network training
	Derivation of CNN error gradient
	Error sensitivity definition
	Error sensitivity computation
	Error gradient computation

	CNN training algorithms

	Library usage
	Main functions
	Function cnn_new
	Function cnn_init
	Function cnn_sim
	Function cnn_train

	Image classification application
	Experiment data
	Creating a CNN
	Training the CNN
	Testing the CNN

	MATLAB implementation notes
	Conclusion
	Appendix

